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Abstract. The aim of this study was to explore the responses of the 
epipelic biofilm of a Pampean stream with little impact from human 
activity to two environmental conditions, with joint modifications in 
nutrients, temperature, water velocity and turbidity. The experiment 
was conducted using artificial channels and lasted five weeks. The 
biological variables measured included chlorophyll-a content, 
bacterial biomass, ash-free dry weight, total carbohydrate 
concentration, total respiratory activity, and biofilm composition. 
Results show that the species’ composition of the biofilm was 
affected, although no other structural or metabolic variables 
measured were. These results highlight the importance of including 
structural parameters to measure rapid changes in water quality, 
even when analyzing the effects of co-occurring variables. 
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Introduction 

The land use change to produce 
goods and services represents one of the 
most important human alterations, affecting 
the structure and functioning of aquatic 
ecosystems in general. The loss of habitats, 
water extraction, pollution, resource 
overuse and the introduction of non native 
species have influences negatively in 
freshwater ecosystems. As a consequence to 
these pressures, the freshwater ecosystems 

are among the most vulnerable in the world 
(Revenga et al., 2005). Particularly in lotic 
fluvial systems, their sensitivity to human 
impact is magnified by their lineal and 
unidirectional nature; almost any activity 
conducted in the basin has the potential to 
influence the characteristics downstream up 
to a great extent (Malmqvist and Rundle, 
2002). 

In the Pampean plains, for example, 
are greatly influenced by human activity. 
The southernmost sector of these plains in 
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Argentina has over 21 million inhabitants 
(INDEC, 2010) that conduct an intense 
agricultural and industrial activity, 
favouring the input of contaminants to the 
water bodies. On the other hand, the 
climatic models for the region also predict 
higher rainfalls (Hulme and Sheard, 1999), 
which can increase erosion and generate 
flooding, increasing the transport of 
sediments, nutrients, and contaminants into 
the water (Davies-Colley et al., 1992; 
Davies-Colley and Smith, 2001). Although 
the lotic systems from the Pampean plains 
have naturally high concentrations of 
nutrients when compared to other lotic 
systems in the world (Meybeck, 1982; 
1987; Giorgi et al., 2005; Feijó and 
Lombardo, 2007), these modifications in 
land use, intensified by the effect of 
changes in climatic patterns, have 
repercussions on their water quality, 
altering their physical, chemical and 
hydrologic properties (Rodrigues Capitulo 
et al., 2010). For instance, an experimental 
addition of nutrients in a Pampean stream 
evidenced responses of the biotic 
communities different to those observed in 
water bodies from other biomes (Artigas et 
al., 2013). 

Among the diverse communities 
that inhabit the streams, biofilms composed 
of algae, bacteria, fungi and protozoa, all 
embedded in an extracellular matrix (Lock 
et al., 1984) represent a pertinent 
bioindicator of environmental perturbations 
within the aquatic ecosystem (Bonnineau et 
al., 2010; Romaní et al., 2016). This 
community is particularly sensitive to light 
and nutrients availability, and to the 
physical characteristics of water flow 
(Horner et al., 1990; Stevenson, 1996). On 
the one hand, increments in some factors 
such as light availability, concentrations of 
inorganic nutrients, temperature and water 
velocity, usually have a positive effect on 
biofilm development, that gets expressed as 
a proliferation in algal and bacterial 
biomass and elevated metabolism (e.g. 
Horner and Welch, 1981; Guasch et al., 
1995; Dodds et al., 2002; Olapade and Leff, 
2005), along with reductions in the 
proportion of carbohydrates (e.g. Freeman 
and Lock, 1995; Sutherland, 2001), and the 

proliferation of polysaprobic and eutrophic 
species. On the other hand, increments in 
other factors such as water velocity or 
turbidity usually have the opposite effects 
on the community (e.g. von Schiller et al., 
2007; Romaní and Sabater, 2000; Davies-
Colley and Smith, 2001). 

Research concerning the responses 
of the epipelic biofilms (those that develop 
on fine sediments) to environmental 
changes in template areas is scarce (Sierra 
and Gómez, 2007; 2010; 2013; Gómez et 
al., 2009; Cochero et al., 2013). In natural 
streams, however, biofilms are almost 
always subjected to multiple stressors that 
influence the overall water quality rather 
than to the modifications of a single factor 
(Breitburg et al., 1998; Venter et al., 2006; 
Halpern et al., 2007, 2008; Crain et al., 
2008). Therefore, the aim of this study was 
to explore the possible responses of epipelic 
biofilms to two distinct environmental 
conditions, with joint increments of 
nutrients, temperature, water velocity and 
turbidity. 

For this purpose, biofilms from a 
stream with little human impact were 
exposed to two environmental conditions, 
named Low and High treatment, that 
combined increments in temperature, 
nutrients (phosphorous and nitrogen), 
turbidity and water velocity. Changes in the 
structure and metabolism of the epipelic 
biofilms were measured for five weeks, 
predicting growth in both algal and 
bacterial biomasses and total respiration, 
declines in the total concentration of 
carbohydrates in the sediment, and changes 
in the specific composition that favor 
species tolerant to more eutrophic 
conditions. 

Materials and methods 

A laboratory experiment in artificial 
channels was carried out using epipelic 
biofilm from a site in the “Martin Stream” 
(34° 54’ 51” S - 58° 04’ 39” W), which is 
exposed to the impact of low agricultural 
activity. The water quality of the site (Table 
1) was assessed a priori by the 
concentrations of Soluble Reactive 
Phosphorous (SRP, mg P L-¹), Dissolved 
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Inorganic Nitrogen (DIN, mg N L-¹), 
Dissolved Oxygen (DO, mg L-¹), 
Biochemical Oxygen Demand (BOD5,  
 

mg L-¹) and Chemical Oxygen Demand 
(COD, mg L-¹) (Bartram and Balance, 
1996). 
 

 
Table 1. Dissloved oxygen conncentration (DO), soluble reactive phosphorous (SRP), disolved inorganic 
nitrogen (DIN), biochemical oxygen demand (BOO5) and chemical oxygen demand (COD) measured in 
the “Martin” stream before the experimental stage. 

Temperature (°C) 23.43 (± 0.68) 
pH 8.77 (± 0.02) 
Conductivity (μS cm-¹) 1536 (± 4.12) 
DO (mg L-¹) 7.70 (± 0.25) 
SRP (mg P L-¹) 0.37 (± 0.01) 
DIN (mg N L-¹) 0.22 (± 0.05) 
BOD5 (mg L-¹) 6 (± 0.11) 
COD (mg L-¹) 15 (± 0.57) 
 
 

Nine indoor artificial channels 
measuring 1 m (length) x 0.15 m (width) x 
0.10 m (height) were used, each with an 
access ramp (40º slope) that ensures a 
laminar input flow (water depth was 
0.10 m). Water exiting the channel flowed 
through a slit, and fell into a holding 
reservoir before being pumped back to the 

access ramp (Figure 1). All artificial 
channels were exposed to a photoperiod of 
14 h light-10 h dark. Light was provided by 
GE® E-biax Helical lights (6,500°K, 
IRC82%) with an intensity of 110-
115 μE m−² s−¹ of photosynthetically active 
radiation. 

 
 

 
Figure 1. Experimental design employed (a) and schematics of one of the nine artificial channels used in 
the experiments (b). The physical-chemical variables in the control channels were kept similar to the 
values obtained in the field, while the treatment channels were exposed to the combined increments in 
four variables in two distinct levels. 
 
 

Out of the nine channels, three were 
used as controls (C) and their physical-
chemical variables were kept similar to the 
values measured at the stream. Another 
three channels (HIGH treatment) were 

exposed to a 4° C increase in temperature, 
300% increase in nutrients (SRP and DIN), 
50% increase in suspended solids and 20% 
increase in water velocity. These values 
were selected as they represent a realistic 
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characteristic of highly eutrophic sites in 
Pampean streams (Licursi and Gómez, 
2002; Gómez et al., 2008; Sierra and 
Gómez, 2010), and by considering the 
increments forecasted in temperature and 
rainfall for the Pampean Region for the next 
decades (Hulme and Sheard, 1999) and the 
temperature-runoff relationship (Labat et 
al., 2004). The last three channels (LOW 
treatment) were exposed to intermediate 
levels of the manipulated variables: 1 °C 
increase in temperature, 50% increase in 
nutrients (SRP and DIN), 15% increase in 
suspended solids and 5% increase water 
velocity. These values were selected as they 
represent an intermediate alteration of the 
experimental variables. 

Water temperature increments were 
achieved using regulated Atman 70 W 
water heaters placed in the individual tanks 
of each artificial channel. The increments in 
water velocity were achieved by calibrating 
the Chosen® Champion CX-500 water 
pumps, also placed in the individual tanks 
of each channel, at the proper speeds. 
Increases in turbidity were achieved by 
adding sterilized suspended solids to each 
channel from the corresponding stream 
where the biofilm was collected from. 
Nutrient increments (SRP and DIN) were 
achieved by adding dissolved Nitrofoska® 
fertilizer (of frequent use in the Pampean 
plain for agricultural purposes, 
12% N - 12% P- 17% K) in the appropriate 
concentration for each channel. For every 
physical-chemical variable measured, three 
samples were collected from each channel, 
and the results obtained for each sample 
were averaged to be used in all statistical 
analyses. 

For the biofilms to develop, each 
channel contained Falcon® multiwell 
polystyrene microplates first filled with 
sterilized sediment from the sampling site, 
for a total volume in each well of 3.4 cm³. 
Biofilm inocules were brought from the 
sampling site during the summer and added 
to the microplates, and water from the same 
site was circulated in each channel for 36 
days. Water from all channels was partially 
renewed with filtered stream water twice a 
week to prevent metabolite accumulation. 

Physical-chemical variables 
Dissolved Oxygen (DO, mg L-¹), 

temperature (°C), conductivity (μS cm-¹) 
and pH were measured using a CONSORT 
C933 sensor. Turbidity (NTU) was 
measured using an HORIBA U10 sensor, 
and water velocity (m s-¹) using a 
Schiltknecht MiniAir20. Nutrient samples 
were filtered through glass fiber filters 
(Whatman GF/F, Whatman International); 
ammonia, nitrites, nitrates and soluble 
reactive phosphorous were analyzed 
according to standard methods (APHA, 
1998). Total dissolved inorganic nitrogen 
(DIN, mg N L−1) was calculated as the sum 
of nitrate, nitrite and ammonia. 

Epipelic biofilm sampling 
The epipelic biofilm samples were 

collected by pipetting the first 10 mm of the 
superficial layer (3.14 cm³) from wells 
selected at random in each channel. 
Samples for all biological analyses 
consisted of three subreplicates (three 
wells). All measurements performed in the 
biofilm samples were normalized to square 
centimeters of sand surface area, which was 
calculated as described in Marxsen and 
Witzel (1991). 

Community analysis 
Three samples from each channel 

were fixed with formaldehyde (4%) and 
used to identify the community 
composition. Density of consumers and 
producers of the microbenthic community 
(size < 1 mm) were estimated using a 
Sedgwick–Rafter chamber (APHA, 1998) 
in an inverted optical microscope (Olympus 
BX 50) at 400X. The following keys were 
used for species identification: Bourrely 
(1966, 1968, 1970), Krammer and Lange-
Bertalot (1986, 1988, 1991a, b), Tell and 
Conforti (1986), Streble and Krauter 
(1987), and Komárek and Anagnostidis 
(1999, 2005). 

Chlorophyll-a 
Epipelic biofilm samples were 

filtered through Sartorious GF/C filters.  
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Samples were sonicated for 2 min in a 
Cleanson CS-1106 sonicator and filters 
were stored in the dark and frozen until they 
were analyzed. Chlorophyll-a (mg cm-²) 
was then extracted with 90% acetone for 
12 h. The supernatant was read in a UV-
VIS Auto 2602 spectrophotometer, and the 
concentration was calculated according to 
Strickland and Parsons (1968). 

Bacterial biomass 
Epipelic biofilm samples were 

stored in sterile glass vials with formalin 
2% v/v. Bacterial density was estimated 
after sonication (three 2 min cycles) and 
appropriate dilution (1:100 to 1:400) of the 
samples. Diluted samples were stained for 
10 min with DAPI (4’,6-diamidino-2-
phenyilindole) to a final concentration of 1 
µg mL−¹ (Porter and Feig, 1980), and 
filtered through a 0.2 µm black 
polycarbonate filter (GE Osmonics). 
Bacteria were then counted using an 
epifluorescence microscope (Olympus BX-
50) under 1,000x magnification. Twenty 
fields were counted for a total of 400 to 800 
organisms per replicate. Bacterial 
biovolume was calculated assuming a 
0.1 µm³ constant volume per bacterial cell 
(Romaní et al., 2009), and bacterial biomass 
(µgC cm-²) was calculated from bacterial 
cell biovolume using the conversion factor 
of 2.2 x 10-¹ gC µm-³ (Bratbak and Dundas, 
1984). 

Ash-free dry weight 
Samples were dried for 48 h at 

60 °C, weighed, ashed for 3 h at 550 °C, 
and re-weighed to determine the ash-free 
dry weight (AFDW) content (APHA, 
1998). 

Total carbohydrates 
Epipelic biofilm samples were 

ground in 5 mL of 1 M H2SO4 with a glass 
rod in glass tubes, covered in aluminum foil 
and placed in a thermobath at 100 °C for an 
hour. An aliquot of 1 mL was separated 
from the supernatant and 1 mL of 5% 
phenol and 5 mL of concentrated H2SO4 
were then added. After allowing the tubes 
to cool down for 30 min the samples were 
read in a UV-VIS Auto 2602 

spectrophotometer at 485 nm (based on 
Dubois et al., 1956). Total carbohydrate 
(µg mL-¹) values were obtained using a 
glucose calibration curve. 

Total respiratory activity 
The activity of the electron 

transport system (ETS) was assayed by 
measuring the reduction of the electron 
transport acceptor INT (2-3 tetrazolium 
chloride) into INT-formazan (iodonitro-
tetrazolium formazan) (Blenkinsopp and 
Lock, 1990). Epipelic biofilm samples were 
incubated for 12 h on a shaker in the dark 
with 0.02% INT (2-(4-Iodophenyl)-3-(4-
nitrophenyl)-5-phenyltetrazolium chloride) 
at room temperature. To terminate the 
reaction, 8 mL of methanol at 4 °C were 
added, and samples were filtered through 
Sartorious GF/C filters before reading them 
in a UV-VIS Auto 2602 spectrophotometer 
at 480 nm (Blenkinsopp and Lock, 1990). 
Total respiratory activity values (mg 
formazan cm-² h-¹) were calculated using an 
INT-formazan calibration curve (Sigma 
I7375). 

Data analysis 
Significant differences for the 

measured biological variables were 
analyzed using a two-way repeated 
measures analysis of variance (RM 
ANOVA) to test for the differences among 
treatments and dates (Winer, 1971). 
Homogeneity of variances was first 
checked using Cochrane’s test, and 
probabilities within groups were corrected 
for sphericity using the Greenhouse–
Geisser correction. Differences in the 
physical-chemical variables between 
treatments were analyzed using a one-way 
ANOVA, and the same analysis was used 
to monitor that the manipulated variables 
fell within the planned values. All post-hoc 
comparisons were made by Student–
Newman–Keuls Test (SNK), and 
generalized eta² (ηG²) was computed as a 
measure of the effect size (Olejnik and 
Algina, 2003). This statistic has two major 
advantages over the traditional eta² and 
partial-eta²: first, it provides measures of 
effect size that are comparable across a 
wide variety of research designs; and 
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second, these effect-size measures provide 
indices of effect that are consistent with 
Cohen’s (1998) guidelines for defining the 
magnitude of the effect (Olejnik and 
Algina, 2003). These guidelines state that 
an effect size ≤ 0.20 is considered small, 
around 0.50 is considered a medium effect, 
and ≥ 0.80 is a large effect. ηG² provides 
comparability across between-subjects and 
within-subjects in repeated measures 
designs (Bakeman, 2005), and is estimated 
as: 

 

where: SS represents a Sums of Squares, A 
represents a between-subjects factor 
(Treatment), P represents a within-subjects 
factor (Time) and s represents the subjects 
factor. 

Also, the overall differences 
between the controls and treatments in the  
 

composition (autotrophs and consumers) 
were analyzed conducting an Analysis of 
Similarity (ANOSIM), and a two-way 
similarity percentage analysis (SIMPER), 
based on the Bray–Curtis similarity 
measurement was used to determine the 
percent contribution of each taxon to the 
average dissimilarity between groups across 
all times (Clarke 1993). 

Results 

Physical-chemical parameters 
The values obtained for the 

physical-chemical variables measured in the 
sampling site were used as the target values 
for the control channels in the laboratory. 
The manipulated variables in the channels 
(SRP, DIN, temperature, water velocity and 
turbidity) were significantly increased in 
both LOW and HIGH treatments when 
compared to the controls (p < 0.05, Table 
2). Results from the analysis of variance 
show that these increments were in 
accordance with the planned increments for 
the experiment. 

 
 
Table 2. Mean ± standard deviation of the physical-chemical variables measured in the experiment. 
A posteriori test Student-Neuman-Keuls (SNK) are shown when significant differences were found. 

 
Mean (±SD) SNK C LOW HIGH 

pH 8.7 (± 0.1) 8.6 (± 0.1) 8.5 (± 0.2)  
Conductivity (µS cm-¹) 633.6 (± 256.7) 723.5 (± 266.8) 1,075.4 (± 292.4) C = LOW < HIGH 
DO (mg L-¹) 7.7 (± 0.02) 7.7 (± 0.02) 7.6 (± 0.02) - 
Temperature (°C) 24.7 (± 1.3) 25.8 (± 1.2) 28.9 (± 1.4) C < LOW < HIGH 
Turbidity (NTU) 32.3 (± 7.5) 36.9 (± 8.1) 48.3 (± 10.8) C = LOW < HIGH 
Water Velocity (m s-¹) 0.35 (± 0.01) 0.37 (± 0.01) 0.43 (± 0.01) C < LOW < HIGH 
SRP (mg L-¹-P) 0.20 (± 0.12) 0.327 (± 0.19) 0.891 (± 0.53) C < LOW < HIGH 
DIN (mg L-¹-N) 0.43 (± 0.40) 0.75 (± 0.65) 1.39 (± 1.30) C < LOW < HIGH 
C = Control, LOW = Low treatment, HIGH = High treatment. 
 
 

Bacterial biomass 
The bacterial biomass remained 

unvaried throughout the first three weeks in 
all channels, and increased in the fourth 
week indistinctly from the treatments 
(Figure 2a). The biomass in the controls 
had a mean of 16.64 (±25.96) µgC cm-², of 
24.61 (± 44.08) µgC cm-² in the LOW 
channels and of 30.09 (±69.45) µgC cm-² in 
the HIGH channels; the variation in the 

parameter throughout the experiment was 
high (ηG² = 0.64) (Table 3). 

Algal biomass 
The chlorophyll-a concentration in 

the channels remained similar throughout 
the experiment in all channels (Figure 2b). 
The mean values in the controls 
(0.41 ± 0.23 mg cm-²) were not significantly 
different from the values in the LOW 
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treatment (0.42 ± 0.21 mg cm-²) or the 
HIGH treatment (0.33 ± 0.14 mg cm-²). 

Ash-free dry weight 
The mean ash-free dry weight 

values were of 0.03 (±0.01) mg cm-² in the 
controls, of 0.05 (±0.08) mg cm-² in the 
LOW channels, and of 0.07 (±0.11) mg cm-

² in the HIGH channels. The variation of 
this parameter throughout the experiment 
(Figure 2c) was similar to the one measured 
in the bacterial biomass, which suggests 
that the bacterial community is responsible 
for most of the organic matter content in the 
samples. However, there were no 
significant differences between the 
treatments and the controls (Table 3). 

Total respiratory activity 
The total respiration values, as 

measured by the electron transport system, 
showed a mean value of 20.41 (±19.51) µg 
formazan cm-2 h-1 in the controls, of 16.67  
 

(±10.61) µg formazan cm-2 h-1 in the LOW 
channels and of 12.57 (±8.01) µg formazan 
cm-2 h-1 in the HIGH channels (Figure 2d). 
The response in this variable was dependant 
on the sampling time (significant 
Treatment*Date interaction in Table 3), 
being significantly higher in the controls in 
the first two weeks (one-way ANOVA, 
p < 0.05). 

Total carbohydrates 
The concentration of total 

carbohydrates had a mean value of 1329 
(±1662) µgC cm-² in the controls, of 1526 
(±1799) µgC cm-² in the LOW channels and 
of 1535 (±1797) µgC cm-² in the HIGH 
channels. Although the total carbohydrate 
concentration was not significantly different 
between each treatment (Table 3), attributed 
to the large variability of the parameter 
throughout the experiment (ηG

2 = 0.79), 
their concentration increased by the final 
two weeks in all channels (Figure 2e). 

 
Table 3. Repeated measures ANOVA summary results for the biological variables examined in the 
experiment, considering two factors: Treatment (Control, Low, High) and Date (1 through 6). Measures 
of the biological effect are also shown (ηG

2), and significant differences are highlighted in bold (p < 0.05). 

Source of variation Treatment Date Treatment x Date 
p ηG

2 p ηG
2 p ηG

2 
Bacterial biomass 0.90 0.01 0.01 0.64 0.92 0.03 
Chlorophyll-a 0.29 0.09 0.08 0.30 0.25 0.30 
Ash-free dry weight 0.27 0.10 0.04 0.46 0.25 0.32  
Total respiratory activity 0.30 0.18 0.03 0.30 0.01 0.69 
Carbohydrates 0.90 0.01 0.01 0.79 0.94 0.02 
Autotrophs       

Diatoms 0.71 0.14 0.24 0.14 0.54 0.13 
Clorophytes 0.86 0.02 0.63 0.04 0.46 0.17 
Euglenophytes 0.06 0.11 0.49 0.10 0.33 0.29 
Cyanophytes 0.52 0.05 0.09 0.30 0.66 0.12 

Consumers       
Nematods 0.22 0.16 0.33 0.12 0.34 0.23 
Cladocerans 0.62 0.02 0.26 0.18 0.29 0.29 
Rotifers 0.55 0.04 0.43 0.10 0.35 0.25 
Protozoans 0.17 0.09 0.67 0.06 0.48 0.21 

 
 
 

Community composition 
The most represented autotrophs 

throughout the experiment in all channels 
were diatoms (Figure 3), mainly Surirella 

linearis Smith, Denticula elegans Kützing, 
Navicula erifuga Lange-Bertalot, Nitzschia 
frustulum (Kützing) Grunow var. frustulum, 
and Placoneis clementis (Grunow) Cox). 
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Figure 2. Variations in the biological variables measured througout the experiment: (a) Bacterial 
biomass; (b) Chlorophyll-a concentration; (c) AFDW; (d) Total respiration; (e) Total carbohydrates. Bars 
indicate standard deviation. 
 
 

In abundance, the diatoms were 
followed by cyanophytes, mainly 
Oscillatoria tenuis Agardh ex Gomont, and 
chlorophytes, mainly Coelastrum 
microporum Nägeli in A. Braun, 
Scenedesmus opoliensis Richter and 
Pediastrum duplex Meyen. Euglenophytes, 
although scarce, were represented by 

Euglena acus (Müller) Ehrenberg and 
species of the genus Phacus Ehrenberg. The 
abundance of the different algal groups did 
not exhibit significant differences between 
the controls and the treatments (Table 3). 

Among the consumers, the 
nematods were the most abundant in all  
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Figure 3. Total densities of autotrophs (left panels) and consumers (right panels) in the controls, LOW 
and HIGH treatments, represented as mean values (point), standard error (boxes) and standard deviation 
(bars). 

 
 



174 Cochero and Gómez 
 

Braz. J. Biol. Sci., 2016, v. 3, no. 5, p. 165-179. 
 

channels, followed by cladocerans and 
protozoans (ciliates and testate 
amoebae),while rotiferans were the least 
abundant (Figure 3). However, no 
significant differences were found in these 
groups due to the treatments (Table 3). 

The ANOSIM results showed 
significant differences between the controls 
and the LOW treatment (p = 0.04) and 
between the controls and the HIGH 

treatment (p = 0.03) when considering the 
species composition. The average 
dissimilarity between the controls and the 
LOW treatment was slightly lower (71.9%) 
than the dissimilarity between the controls 
and the HIGH treatment (73.2%), and the 
taxa that contributed more to the 
dissimilarity between the groups belonged 
to the autotrophs, particularly diatoms and 
cyanobacteria (Table 4). 

 
 
Table 4. Percentage of dissimilitude between the controls and both treatments, and percentage of 
contribution of the species that contributed most to the dissimilarity between treatments (Control vs. Low 
treatment and Control vs. High treatment) as expressed by the SIMPER results. 

 Control vs. LOW 
(% dissimilitude) 

Control vs. HIGH 
(% dissimilitude) 

Total dissmilitude 71.9 73.2 
Oscillatoria tenuis Agardh ex Gomont 12 17 
Nitzschia palea (Kützing) Smith   7   8 
Ulnaria ulna (Nitzsch.) Compère   8 12 
Nitzschia linearis Smith   6 13 
Diadesmis converfacea Kützing   6 13 
Sellaphora seminulum (Grunow) Mann   2   8 
Placoneis placentula (Ehrenberg) Heinzerling   4   8 
Nitzschia amphibia Grunow   2   3 
Calloneis bacillum (Grunow) Cleve   2   3 
Planothidium lanceolatum Lange-Bertalot   2   3 

 

 
Discussion 

The results from this study show 
that only the specific composition of the 
autotrophic assemblage changed in the 
analyzed time period, as indicated by 
increase in the dissimilitude between the 
control and treatments. Although the 
structural parameters of biofilms are usually 
last to be affected by changes in the 
environment, the species’ composition 
within the biofilm was significantly 
impacted by the treatments, reaching 
dissimilitude values of 71.9% due to the 
low impact treatment, and 73.2% due to the 
more intense treatment. Density variations 
in species such as Oscillatoria tenuis, 
Nitzschia palea, Ulnaria ulna, Nitzschia 
linearis, Diadesmis converfacea, 
Sellaphora seminulum and Placoneis 
placentula, which proliferate in eutrophic 
conditions (Palmer 1969; Van Dam et al., 
1994; Licursi et al., 2016), contributed the 

most to the variability between the controls 
and both treatments.  

These changes led to a modification 
in the autotrophic assemblage, with rises in 
species most tolerant to a worse habitat and 
water quality condition, in only a few 
weeks of the experiment. Similar changes 
were recorded in a field nutrient addition in 
a Pampean stream (Artigas et al., 2013; 
Cochero et al., 2013), where the basal 
phosphorous levels were tripled, and rapid 
occurring changes were observed in the 
algal assemblage, particularly in the 
proportion of diatoms as a consequence of 
the input of nutrients to the system (Licursi 
et al., 2016), while the bacterial biomass 
and its metabolic activity took longer 
periods of time to be significantly affected 
(Cochero et al., 2013). 

Although it has been reported that 
the co-occurrence of the increments in 
temperature and nutrients lead to metabolic 
and structural responses in epilithic 



Stream biofilm responses to multiple environmental variables 175 
 

Braz. J. Biol. Sci., 2016, v. 3, no. 5, p. 165-179. 
 

biofioms in short exposition periods (60 
days) (Villanueva et al., 2011), and similar 
responses are caused by nutrients and water 
current velocity (Horner and Welch, 1981), 
the changes in the total respiratory activity 
in this experiment, with an epipelic biofilm 
exposed to a greater number of stressors, 
were not evident immediately. The 
dependence of bacteria for autochthonous 
organic matter in Pampean streams 
(Cochero et al., 2013) suggests that this 
heterotrophic community needs longer 
exposition times to show significant 
changes in the biofilm. On the other hand, 
the effect of nutrients alone can be less 
predictable in ecosystems with higher basal 
nutrient levels, such as Pampean streams. 
Although changes are slow, it is possible 
that the chronic input of nutrients will affect 
the functioning and the services that these 
water bodies provide (Artigas et al., 2013). 
Our results show that the epipelic biofilms 
subjected to the co-occurrence of several 
constant stress factors reveal that the 
specific composition of the autotroph 
assemblage responds sensitively at short 
term exposures, in comparison with the 
other variables analyzed. 

Pampean streams are subject to a 
growing demographic pressure, and the 
expansion of cultivated land along with the 
effects of global changes might have 
significant effects in temperature and 
rainfall patterns that influence these lotic 
systems. Therefore, the combination of 
studies with various temporal and spatial 
scales can provide with a more precise 
comprehension of the factors that determine 
the development and dynamics of these 
epipelic communities. Studies that include 
the effects of multiple stressors in 
freshwater communities, such as those 
carried out by Ormerod et al. (2010), Proia 
(2012), Piggott et al. (2012), Lange et al. 
(2014), Piggott et al. (2015), require a more 
intricate and complex experimental design 
than the one employed in this article, to be 
able to identify the individual contribution 
of each environmental variable. However, 
the results shown in this article increase the 
current knowledge of the overall effects of 
co-occurring variables on epipelic biofilms 
of these nutrient rich streams, and 

highlights the sensitivity of the specific 
composition to measure rapid changes in 
water quality. 

Conclusion 

In summary, this study shows that 
the responses of nutrient-rich biofilms to 
the effects of co-occurring physical-
chemical changes are not easily predictable, 
since they do not necessarily coincide with 
the results obtained in the large variety of 
studies that modified the same physical-
chemical variables in an individual manner. 
This could be the result of the inherent 
resistance of nutrient-rich biofilms to 
stressors, or could be a consequence of an 
antagonistic interaction between the 
manipulated variables. 

However the case, more research 
that includes the effects of multiple 
stressors is needed to understand how the 
biofilms respond in natural settings, where 
the variations of a single variable due to 
either environmental or human-induced 
factors are unusual. Also, these results 
highlight the sensitivity of community-
based bioindicators, such as species 
composition, to environmental changes at 
short term experiments. 
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